Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4048, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744821

RESUMEN

Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.


Asunto(s)
Bacterias , Ciclo del Carbono , Glucanos , Glucanos/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Fitoplancton/metabolismo , Biomasa , Diatomeas/metabolismo , Eutrofización , Carbono/metabolismo , Zooplancton/metabolismo , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/química , Proteínas Bacterianas/metabolismo
2.
Environ Microbiol ; 25(9): 1713-1727, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37121608

RESUMEN

Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved ß-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.


Asunto(s)
Flavobacteriaceae , Xilanos , Xilanos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Polisacáridos/metabolismo , Flavobacteriaceae/genética , Genómica
3.
ISME J ; 17(2): 276-285, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36411326

RESUMEN

The polysaccharide ß-mannan, which is common in terrestrial plants but unknown in microalgae, was recently detected during diatom blooms. We identified a ß-mannan polysaccharide utilization locus (PUL) in the genome of the marine flavobacterium Muricauda sp. MAR_2010_75. Proteomics showed ß-mannan induced translation of 22 proteins encoded within the PUL. Biochemical and structural analyses deduced the enzymatic cascade for ß-mannan utilization. A conserved GH26 ß-mannanase with endo-activity depolymerized the ß-mannan. Consistent with the biochemistry, X-ray crystallography showed the typical TIM-barrel fold of related enzymes found in terrestrial ß-mannan degraders. Structural and biochemical analyses of a second GH26 allowed the prediction of an exo-activity on shorter manno-gluco oligosaccharides. Further analysis demonstrated exo-α-1,6-galactosidase- and endo-ß-1,4-glucanase activity of the PUL-encoded GH27 and GH5_26, respectively, indicating the target substrate is a galactoglucomannan. Epitope deletion assays with mannanases as analytic tools indicate the presence of ß-mannan in the diatoms Coscinodiscus wailesii and Chaetoceros affinis. Mannanases from the PUL were active on diatom ß-mannan and polysaccharide extracts sampled during a microalgal bloom at the North Sea. Together these results demonstrate that marine microorganisms use a conserved enzymatic cascade to degrade ß-mannans of marine and terrestrial origin and that this metabolic pathway plays a role in marine carbon cycling.


Asunto(s)
Diatomeas , Mananos , Mananos/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Bacteroidetes/genética , beta-Manosidasa/genética , beta-Manosidasa/química , beta-Manosidasa/metabolismo , Polisacáridos/metabolismo , Oligosacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...